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I. Introduction

T HE baselinematerialpropertiesof compositematerialsare sus-
ceptible to errors due to variousdefects during the manufactur-

ing and operation. Thus, accurate estimation of the actual material
properties is absolutely necessary for accurate numerical analysis.
In the presentNote, an ef� cient and accurate procedure is presented
for the nondestructivematerial property identi� cation of composite
plates.

One of the popular nondestructivetests to identify material prop-
ertiesof compositestructuresis to utilizedynamic responsessuch as
natural frequenciesand mode shapes.Dynamics updatingproblems
are solved by inverse procedures,1¡6 where perturbation methods
based on the Taylor series expansion is usually adopted. Optimiza-
tion techniques based on the conjugate-gradientmethod have been
introduced that minimize the error norm of measured data and nu-
merical results.5 However, because the mass matrix is not updated,
the material properties may be distorted due to the inaccuracies in
the mass matrix.6 Although the accuracy of the predicted dynamic
behaviors may be enhanced by considering the dynamic response
data, the evaluatedstatic behavioris prone to error.With inclusionof
staticdata in the updateprocess, thesedif� cultiescouldbe relieved.7

Recently neural networks have drawn attention due to their pow-
erful capabilitiesof pattern recognition,classi� cation, and function
approximation.A neural network has been utilized for the identi� -
cation of material properties and damage detection by recognizing
patterns of dynamic behavior and modal parameters.8 Because the
neural network does not require an explicit equation relating input
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data and output results, it can be utilized to solve complex inverse
problems without calculationof the sensitivity,where the in� uence
of certainparameterson the mass andstiffnessof the structuresis not
obvious. Accurate predictionwith neural networks usually requires
many training input/output patterns, resulting in a large amount of
computing time. This is one of reasonswhy most research is limited
in application of neural network to simple problems.

In this Note, a neural network and an evolution algorithm are
combined for the ef� cient predictionof material propertiesof struc-
tures. The neural network can make accurate predictionsby using a
small number of training data sets that is carefully selected through
the evolution process.9 The present method is a simple algorithm,
shows rapid convergence,and does not require sensitivitycomputa-
tions.The applicabilityof the proposedmethod for the identi� cation
of the material properties of composite plates and the accuracy of
the numerical analysis of static and dynamic behaviors using the
identi� ed material properties are investigated.The identi� cation of
material properties is accomplished by minimizing the difference
between experimental measurements and the correspondingvalues
of the dynamic responses and the static de� ection obtained by the
� nite element analysis. The measurements of both static and dy-
namic responses ensure reliability in the prediction of the static as
well as dynamic behavior.Accuracy and applicabilityof the present
method are demonstratedby both numerical and experimental tests
of carbon-fabric composite plates.

II. Optimization Using Neural Network
and Evolution Algorithm

In the presentstudy, the neuralnetwork,combinedwith the evolu-
tion algorithm,is used for the identi� cationof material propertiesof
composite structures. The neural network plays the role of approx-
imating and recognizing the complex relationship between input
patterns and output patterns. Figure 1 shows the prediction using
the neural network. The input patterns consist of natural frequen-
cies and static de� ection, whereas the output patterns consist of
the normalized material properties of the composite structures.The
training input/output pairs are generated by � nite element analysis
of the composite structure. However, to obtain an accurate neural
network prediction, a large amount of training data is required.The
computational costs to generate such large training patterns and to
train such large patterns would be very expensive. Therefore, in
this work, we introduce an evolutionary procedure, where quali-
� ed training data are chosen for the neural network using a simple
evolution algorithm. With such an evolutionaryprocedure, compu-
tational costs in training the neural network, as well as in generating
the training patterns, can be substantially reduced.

An evolution algorithm is employed to aid in acceleration of the
convergenceof the neural network learning and in enhancementof
the accuracy of the identi� ed material properties. The criterion for
the selectionprocess is to minimize the error norm given as follows:
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where wi and w0
i are the eigenvalues of the dynamic problem ob-

tained numerically and experimentally, respectively, and ± and ±0

are the numerical and experimental de� ections, respectively. The
scheme of optimization is shown in Fig. 2.

III. Identi� cation Procedure
A schematic � owchart of the procedure is given in Fig. 2. The

identi� cation procedure is composed of the following processes.
First, k input/output pairs are generated for the initial neural net-

work training.Note that k sets of initial vectorsXi , i D 1; : : : ; k, are
chosen from U .a; b/n as the output vector of the neural network,
where Xi is a random vector, whose components are the normal-
ized material properties. U .a; b/n denotes n-dimensional uniform
distribution ranging over [a; b]. The corresponding input vector is
the natural frequencieswi and the static de� ection ± obtainedby the
� nite element method using the material properties of Xi .

Second, material property is predicted using the neural network.
The neural network trained by the k input/output patterns predicts
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Fig. 1 Prediction using the neural network.

Fig.2 Optimizationalgorithmusing the neuralnetwork and evolution.

the material propertiesX0 from the natural frequenciesw0
i and static

de� ection ±0 obtained experimentally.
Third, m new input/output patterns are created from the k C 1

existing input/output patterns (k random patterns plus the experi-
mental result fromstep 2). To create each of the m extra input/output
pairs, k input/output pairs among the k C 1 pairs are selected for the
neural network training. The output vector Xk C i of the newly cre-
ated pair is obtainedby the neuralnetworkpredictionusing the input
vector of the experimentalvalues w0

i and ±0. The input vector of the
newly created pair is obtainedby � nite element analysis using Xk C i

as the material properties.The newly created input/output pairs tend
to be more quali� ed data for the neural network training because
they are closer to the optimized value.

Fourth,thek Cm trainingpatternsproducedundergocompetition.
The k training patterns that minimize Eq. (1) survive as parents for
the nextgeneration,and the remainingm patternsarediscarded.This
process (second–fourth steps) is repeated. The evolution process is
terminated if jXB

i ¡ XW
i j is less than some speci� ed value. XB

i and
XW

i are the most � t and the most un� t trainingpatterns, respectively.
The most � t data are the ones closest to the experimental value.

As described, the evolution algorithm adopted plays the role of
selectingthemost quali� eddataset for theneuralnetworktrainingto
reduce drastically the overall computationalcost. When the present
method of neural networks is used in conjunctionwith the evolution
algorithm, accurate material properties can be identi� ed utilizing
single set of experimental results of natural frequencies and static
de� ection.

IV. Numerical and Experimental Studies
Several numerical and experimental tests were conductedto vali-

date the effectivenessof the proposedprocedure.Among the results,
two representativeexamples are presented.For the numerical stud-
ies, a composite plate of stacking sequence of [0]8T clamped on
one end is selected. The baseline material properties are shown in

Table 1 Baseline material properties
of carbon fabric composite

Property Value

E0
1 65.19 GPa

E0
2 65.19 GPa

G0
12 3.92 GPa

º0
12 0.058

½0 1448 kg/m3

Table 2 Prediction of material properties for composite plate [0]8T

Method E1=E 0
1 E2=E0

2 G12=G0
12 º12=º0

12 ½=½0

Objective 0.7 0.8 0.8 0.9 0.95
Neural network 0.7043 0.8066 0.7963 1.0419 0.9523
Neural network 0.6992 0.7976 0.7991 0.9543 0.9488

and evolution

Fig. 3 Error history of frequencies and de� ection for carbon fabric
composite [0]8T .

Table 1. For identi� cation, the normalized material property vector
has the following values:
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where the superscript 0 refers to the baseline material properties.
Also, forneuralnetworktraining,the four lowestnaturalfrequencies
and the static tipde� ectionsubjectedto static loadingwereused.The
number of the initial input/output pairs, k, is 5, and the number of
additional pairs introduced during the evolution algorithm, m, is 4.

In the � rst case, we tried to simulate the whole procedure nu-
merically to validate the effectivenessof the procedureby assuming
speci� c material propertyapart from the baselinepropertyand tried
to identify the values using the proposedprocedure.This is a veri� -
cationtestbecausethe exactmaterialpropertiesare known, although
notvisible to thenumericalalgorithm.The results(Table 2) are com-
pared with the identi� ed valueusingneuralnetwork alone.Note that
the neural network alone has the potential of predictingan accurate
estimation of the material properties by recognizing the patterns of
the training samples. However, to get an accurate estimation, more
than 200 training samples were required, whereas about 20 training
sets were used altogether with the present method. All in all, the
saving in the computational cost was about 70%.

In the second case, the material propertiesare identi� ed using the
actual experimental results. With the use of the identi� ed material
properties, the static dynamic responses are reevaluated using the
� nite element method. Figure 3 shows the natural frequencies and
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Table 3 Errors of frequencies and static de� ection
for carbon fabric composite [0]8T

Test, FDUB,a Error, FDUP,b Error,
Mode Hz Hz % Hz %

1 66.25 72.3 9.1 66.28 0.038
2 130 127.8 ¡1.7 129.8 ¡0.15
3 416.3 452.9 8.8 415.3 ¡0.25
4 518.8 539.2 3.9 520.0 0.25
5 990 1065.6 7.6 982.3 ¡0.7
Static de� ection, ¡0.68 ¡0.61 10.3 ¡0.677 ¡0.034
mm

aFrequencies and de� ection using baseline material properties.
bFrequencies and de� ection using prediction material properties.

the static de� ection errors during the evolution process. Table 3
shows the results of the natural frequencies and static de� ection
obtained using the � nite element method based on the identi� ed
material properties. Examination of the error between the experi-
mentaldataand thenumericaldata revealnoticeableimprovementin
accuracyof the presentprocedurefrom resultsbasedon the baseline
material properties.

V. Conclusions
An effective nondestructive procedure for the identi� cation of

material propertiesof compositestructureswas presented.The com-
bined method using neural networks and an evolution algorithmef-
fectivelyidenti� es the material properties.The neuralnetworkplays
the role of recognizing the input/output patterns and predicting an
accurate estimate of the actual material properties, and the evolu-
tion algorithm plays the role of providing the neural network with
quali� ed training patterns to enhance the performanceof the neural
network while reducing the computationalcosts.The proposedpro-
cedure is computationallyeconomic and simple to implement com-
pared with other sensitivity-based schemes because the approach
does not require the computation of the sensitivity coef� cients.
Numerical and experimental studies were made for the assess-
ment of the accuracy and effectiveness of the proposed procedure.

Errata
Linear Instability of Laterally
Strained Constant Pressure

Boundary-Layer Flows

P. K. Tyagi and J. Dey
Indian Institute of Science, Bangalore 560 012, India

[AIAA Journal, 39(3), pp. 526, 527 (2001)]

W HILE studyingthe nonparallelaspectof this problem(Tyagi,
P. K., “Linear InstabilityofLaterallyStrained ConstantPres-

sure Boundary Layer,” M.Sc. Thesis, Dept. of Aerospace Engineer-

ing, Indian Inst.of Science,Bangalore,India,2001), we cameacross
an error in our recently reported result, which was based on the par-
allel � ow approximation.We sincerely regret such an unintentional
error.

The nonparallel linear instability equation is found to be the
same as that for the Blasius � ow. The momentum equation (6)
in our earlier analysis shows that, compared to two-dimensional
� ows, the Reynolds number is changed by the nondimensional
divergence/convergence factor, A=.A C x/; this factor is <1 and
>1 for diverging and converging � ows, respectively.Therefore, the
linear instability of a constant pressure diverging/converging � ow
will correspond to that for the Blasius � ow at a correspondingly
reduced/increased Reynolds number. That is, a diverging � ow will
be more unstable than the two-dimensional Blasius � ow. Similarly,
a converging � ow will be more stable than the two-dimensional
Blasius � ow.

Reanalysis results using the � nite element method based on the
identi� ed material propertieswere compared with the experimental
results.Based on the numerical and experimentalstudies conducted
herein, it can be concluded that more accurate dynamic and static
responsesof structurescan be evaluatedby numericalanalysisusing
the material properties identi� ed by the proposed procedure.
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