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I. Introduction

HE baseline material properties of composite materialsare sus-

ceptibleto errors due to various defects during the manufactur-
ing and operation. Thus, accurate estimation of the actual material
properties is absolutely necessary for accurate numerical analysis.
In the present Note, an efficient and accurate procedure is presented
for the nondestructive material property identification of composite
plates.

One of the popular nondestructivetests to identify material prop-
erties of composite structuresis to utilize dynamicresponsessuch as
natural frequencies and mode shapes. Dynamics updating problems
are solved by inverse procedures, ~® where perturbation methods
based on the Taylor series expansion is usually adopted. Optimiza-
tion techniques based on the conjugate-gradientmethod have been
introduced that minimize the error norm of measured data and nu-
merical results.’> However, because the mass matrix is not updated,
the material properties may be distorted due to the inaccuracies in
the mass matrix.® Although the accuracy of the predicted dynamic
behaviors may be enhanced by considering the dynamic response
data, the evaluatedstatic behavioris prone to error. With inclusionof
staticdata in the update process, these difficulties could be relieved.”

Recently neural networks have drawn attention due to their pow-
erful capabilities of pattern recognition, classification, and function
approximation. A neural network has been utilized for the identifi-
cation of material properties and damage detection by recognizing
patterns of dynamic behavior and modal parameters® Because the
neural network does not require an explicit equation relating input
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data and output results, it can be utilized to solve complex inverse
problems without calculation of the sensitivity, where the influence
of certain parameterson the mass and stiffness of the structuresis not
obvious. Accurate prediction with neural networks usually requires
many training input/output patterns, resulting in a large amount of
computing time. This is one of reasons why most researchis limited
in application of neural network to simple problems.

In this Note, a neural network and an evolution algorithm are
combined for the efficient prediction of material properties of struc-
tures. The neural network can make accurate predictions by using a
small number of training data sets that is carefully selected through
the evolution process.’ The present method is a simple algorithm,
shows rapid convergence,and does not require sensitivity computa-
tions. The applicability of the proposed method for the identification
of the material properties of composite plates and the accuracy of
the numerical analysis of static and dynamic behaviors using the
identified material properties are investigated. The identification of
material properties is accomplished by minimizing the difference
between experimental measurements and the corresponding values
of the dynamic responses and the static deflection obtained by the
finite element analysis. The measurements of both static and dy-
namic responses ensure reliability in the prediction of the static as
well as dynamic behavior. Accuracy and applicability of the present
method are demonstrated by both numerical and experimental tests
of carbon-fabric composite plates.

II. Optimization Using Neural Network
and Evolution Algorithm

In the present study, the neural network,combined with the evolu-
tion algorithm,is used for the identification of material properties of
composite structures. The neural network plays the role of approx-
imating and recognizing the complex relationship between input
patterns and output patterns. Figure 1 shows the prediction using
the neural network. The input patterns consist of natural frequen-
cies and static deflection, whereas the output patterns consist of
the normalized material properties of the composite structures. The
training input/output pairs are generated by finite element analysis
of the composite structure. However, to obtain an accurate neural
network prediction, a large amount of training data is required. The
computational costs to generate such large training patterns and to
train such large patterns would be very expensive. Therefore, in
this work, we introduce an evolutionary procedure, where quali-
fied training data are chosen for the neural network using a simple
evolution algorithm. With such an evolutionary procedure, compu-
tational costs in training the neural network, as well as in generating
the training patterns, can be substantially reduced.

An evolution algorithm is employed to aid in acceleration of the
convergence of the neural network learning and in enhancementof
the accuracy of the identified material properties. The criterion for
the selection processis to minimize the error norm given as follows:

0.5

w; — w? : s—8\" |
2 ()

i

where w; and w? are the eigenvalues of the dynamic problem ob-
tained numerically and experimentally, respectively, and § and §°
are the numerical and experimental deflections, respectively. The
scheme of optimization is shown in Fig. 2.

III. Identification Procedure

A schematic flowchart of the procedure is given in Fig. 2. The
identification procedure is composed of the following processes.

First, k input/output pairs are generated for the initial neural net-
work training. Note that k sets of initial vectors X;, i =1, ..., k, are
chosen from U (a, b)" as the output vector of the neural network,
where X; is a random vector, whose components are the normal-
ized material properties. U (a, b)" denotes n-dimensional uniform
distribution ranging over [a, b]. The corresponding input vector is
the natural frequencies w; and the static deflection § obtained by the
finite element method using the material properties of X;.

Second, material property is predicted using the neural network.
The neural network trained by the k input/output patterns predicts
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the material properties X, from the natural frequencies w? and static
deflection 8° obtained experimentally.

Third, m new input/output patterns are created from the k + 1
existing input/output patterns (k random patterns plus the experi-
mental resultfromsstep 2). To create each of the m extra input/output
pairs, k input/output pairs among the k + 1 pairs are selected for the
neural network training. The output vector X; ;; of the newly cre-
ated pair is obtained by the neuralnetwork predictionusing the input
vector of the experimental values w? and §°. The input vector of the
newly created pair is obtained by finite element analysis using X;  ;
as the material properties. The newly created input/output pairs tend
to be more qualified data for the neural network training because
they are closer to the optimized value.

Fourth,the k 4+ m training patterns producedundergocompetition.
The k training patterns that minimize Eq. (1) survive as parents for
the nextgeneration,and the remainingm patterns are discarded. This
process (second-fourth steps) is repeated. The evolution process is
terminated if IX[B — X[WI is less than some specified value. X[B and
X}V are the most fit and the most unfit training patterns, respectively.
The most fit data are the ones closest to the experimental value.

As described, the evolution algorithm adopted plays the role of
selectingthe most qualified data set for the neuralnetwork trainingto
reduce drastically the overall computational cost. When the present
method of neural networks is used in conjunctionwith the evolution
algorithm, accurate material properties can be identified utilizing
single set of experimental results of natural frequencies and static
deflection.

IV. Numerical and Experimental Studies

Several numerical and experimental tests were conducted to vali-
date the effectivenessof the proposed procedure. Among the results,
two representativeexamples are presented. For the numerical stud-
ies, a composite plate of stacking sequence of [0]sy clamped on
one end is selected. The baseline material properties are shown in

Table 1 Baseline material properties
of carbon fabric composite

Property Value
EY 65.19 GPa
EY 65.19 GPa
GY, 3.92 GPa
v, 0.058
o0 1448 kg/m?

Table 2 Prediction of material properties for composite plate [0]gr
Method E\/JE?  EyJEY  G1/GY, via/vY, p/0°

Objective 0.7 0.8 0.8 0.9 0.95

Neural network 0.7043 0.8066 0.7963 1.0419 0.9523

Neural network 0.6992  0.7976 0.7991 0.9543 0.9488
and evolution
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Fig. 3 Error history of frequencies and deflection for carbon fabric
composite [0]gr.

Table 1. For identification, the normalized material property vector
has the following values:

X, = [E/JEY B, JEY, Gn /GO v [V, 0/0°] @)

where the superscript O refers to the baseline material properties.
Also, forneuralnetwork training, the four lowest natural frequencies
and the statictip deflectionsubjectedto staticloading were used. The
number of the initial input/output pairs, £, is 5, and the number of
additional pairs introduced during the evolution algorithm, m, is 4.

In the first case, we tried to simulate the whole procedure nu-
merically to validate the effectivenessof the procedure by assuming
specific material property apart from the baseline property and tried
to identify the values using the proposed procedure. This is a verifi-
cationtestbecausethe exact material propertiesare known, although
notvisible to the numerical algorithm. The results(Table 2) are com-
pared with the identified value using neural network alone. Note that
the neural network alone has the potential of predicting an accurate
estimation of the material properties by recognizing the patterns of
the training samples. However, to get an accurate estimation, more
than 200 training samples were required, whereas about 20 training
sets were used altogether with the present method. All in all, the
saving in the computational cost was about 70%.

In the second case, the material properties are identified using the
actual experimental results. With the use of the identified material
properties, the static dynamic responses are reevaluated using the
finite element method. Figure 3 shows the natural frequencies and
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Table 3 Errors of frequencies and static deflection
for carbon fabric composite [0]g7

Test, FDUB,? Error,  FDUP} Error,

Mode Hz Hz % Hz %

1 66.25 72.3 9.1 66.28 0.038
2 130 127.8 —-1.7 129.8 -0.15
3 416.3 4529 8.8 415.3 —-0.25
4 518.8 539.2 3.9 520.0 0.25
5 990 1065.6 7.6 982.3 -0.7
Static deflection, —0.68 -0.61 10.3 -0.677 —0.034
mm

4Frequencies and deflection using baseline material properties.
bErequencies and deflection using prediction material properties.

the static deflection errors during the evolution process. Table 3
shows the results of the natural frequencies and static deflection
obtained using the finite element method based on the identified
material properties. Examination of the error between the experi-
mental dataand the numerical datareveal noticeableimprovementin
accuracy of the present procedure from results based on the baseline
material properties.

V. Conclusions

An effective nondestructive procedure for the identification of
material propertiesof composite structures was presented. The com-
bined method using neural networks and an evolution algorithm ef-
fectivelyidentifies the material properties. The neuralnetwork plays
the role of recognizing the input/output patterns and predicting an
accurate estimate of the actual material properties, and the evolu-
tion algorithm plays the role of providing the neural network with
qualified training patterns to enhance the performance of the neural
network while reducing the computational costs. The proposed pro-
cedure is computationally economic and simple to implement com-
pared with other sensitivity-based schemes because the approach
does not require the computation of the sensitivity coefficients.
Numerical and experimental studies were made for the assess-
ment of the accuracy and effectiveness of the proposed procedure.

Errata

Reanalysis results using the finite element method based on the
identified material properties were compared with the experimental
results. Based on the numerical and experimental studies conducted
herein, it can be concluded that more accurate dynamic and static
responsesof structurescan be evaluatedby numerical analysisusing
the material properties identified by the proposed procedure.

Acknowledgments

This research was supported in part by a grant from the BK-21
program for Mechanical and Aerospace Engineering Research at
Seoul National University. The authors also gratefully acknowledge
the financial support from the Ministry of Science and Technology
through the National Laboratory Programs.

References

'Friswell, M. L., and Mottershead, J. E., Finite Element Model Updating
in Sturctural Dynamics, Kluwer Academic, Norwell, MA, 1995.

2Collins,J. D., Hart, G. C., and Kennedy, B., “Statistical Identification of
Structures,” AIAA Journal, Vol. 12, No. 2, 1974, pp. 185-190.

3Chen, J. C., and Garba, J. A., “Analytical Model Improvement Using
Modal Test Results,” AIAA Journal, Vol. 18, No. 6, 1979, pp. 684-690.

4Swilder, P., Le Fichoux, B., and Jacquet-Richardet, G., “Dynamic Mod-
elingof a Composite Plate, a Mixed Numerical and Experimental Approach,”
Composite Structures, Vol. 34, No. 3, 1996, pp. 301-308.

5H0ng, D., Ryou, J.-K., Park, S., and Kim, S. J., “Improved Dynamic
Analysis of Composite Plates by Identification Scheme of Material Prop-
erties,” Proceeding of the 2nd International Conference on Medicine,
Dentistry, Pharmacy, Mechatronics, and Humanities and Social Sciences,
Chosun Unit, Republic of Korea, Nov. 1998.

6Den0yer, K. K., and Peterson, L. D., “Model Update Using Model Con-
tribution to Static Flexibility Error,” AIAA Journal, Vol. 35, No. 11, 1997,
pp- 1739-1745.

7Sanayei, M., and Stephen, F., “Structural Element Stiffness Identification
from Static Test Data,” AIAA Journal, Vol. 117,No. 5, 1991, pp. 1021-1035.

8Tsou, P, and Shen, M. H. H., “Structural Damage Detection and Iden-
tification Using Neural Networks,” AIAA Journal, Vol. 32, No. 1, 1994,
pp- 176-183.

gChiang, Y., and Huang, S.-T., “Modal Parameter Identification Using
Simulated Evolution;” AIAA Journal, Vol. 35, No. 7, 1997, pp. 1204-1208.

E. R. Johnson
Associate Editor

Linear Instability of Laterally
Strained Constant Pressure
Boundary-Layer Flows

P. K. Tyagi and J. Dey
Indian Institute of Science, Bangalore 560 012, India

[ATAA Journal, 39(3), pp. 526, 527 (2001)]

HILE studying the nonparallelaspect of this problem (Tyagi,
P. K., “Linear Instability of Laterally Strained Constant Pres-
sure Boundary Layer,” M.Sc. Thesis, Dept. of Aerospace Engineer-

ing, Indian Inst. of Science, Bangalore,India,2001), we came across
an error in our recently reported result, which was based on the par-
allel flow approximation. We sincerely regret such an unintentional
error.

The nonparallel linear instability equation is found to be the
same as that for the Blasius flow. The momentum equation (6)
in our earlier analysis shows that, compared to two-dimensional
flows, the Reynolds number is changed by the nondimensional
divergence/lconvergence factor, A/(A + x); this factor is <1 and
> 1 for diverging and converging flows, respectively. Therefore, the
linear instability of a constant pressure diverging/converging flow
will correspond to that for the Blasius flow at a correspondingly
reduced/increased Reynolds number. That is, a diverging flow will
be more unstable than the two-dimensional Blasius flow. Similarly,
a converging flow will be more stable than the two-dimensional
Blasius flow.



